|
摘要:随着国内高速铁路的建设和开通,现有移动通信网络已不能适应高速铁路覆盖的要求。文章在分析高铁对移动通信的影响因素基础上,结合国内相关运营商的实际网络建设经验,就现网优化和虚拟专网两种解决方案进行分析和研究,并提出了两种方案在实施过程中的关键技术。
关键词:高速铁路;移动通信;现网优化;虚拟专网
中图分类号:TN929 文献标识码:A 文章编号:1009-2374(2013)11-0111-03
1 概述
近年来,我国高速铁路建设飞速发展,已经开通了沪宁城际高铁、京津城际高铁、京宁高铁、武广高铁等多条高铁线路,高速铁路的运营时速普遍高于200km/h,部分高铁列车时速已经接近300km/h,未来建设的高速铁路时速有望超过350km/h。
高铁列车的开通和不断提速,方便了人民的出行,但是却对高速铁路移动通信的网络覆盖带来了挑战。由于高速铁路列车为全密封铝合金车体,穿透损耗大,降低了车厢内的覆盖效果,高铁列车运营时速快,接近或超过300km/h,多普勒频移和小区间频繁切换现象严重,影响了列车内的移动通信网络质量。
随着高铁不断建设和开通,国内三大运营商的移动通信网络都受到了严重挑战,都在积极规划和解决高速铁路网络覆盖问题,由于国内三大运营商各自运营的网络制式不同、频段不同,受到的影响程度也不相同,因此其各自制定的高铁移动通信覆盖解决方案也不相同。本文首先分析了高铁的开通对移动通信的影响,并在此基础上,结合各运营商的网络特点,提出了针对性的解决方案。
2 高速铁路对移动通信系统影响分析
高铁列车对于移动通信的影响,主要有两方面的
原因:
第一,车厢结构的变化:由于高铁列车车厢为铝合金结构,整体密封性能好,无线信号的穿透损耗增大,降低了车厢内无线信号的强度,从而使高铁列车的车厢内信号场强比普通列车低,网络覆盖质量变差。
第二,运行速度的提升:高铁列车的高速运行,带来的一个最直接的影响就是多普勒频移问题。多普勒频移是一个运动物体普遍存在的现象,由于普通列车一般运行时速为120km/h,速度相对较低,多普勒频移现象不严重。而在高铁环境下,列车运营时速接近300km/h,远高于普通列车,因此多普勒频移对高速铁路移动通信的影响更加严重。另外,移动通信单小区的覆盖范围相对固定,由于高铁列车运行速度的增加,必然会缩短列车在单小区内的停留时间,小区间切换次数增加。而切换时造成网络质量下降,尤其是掉话的重要原因。
2.1 多普勒频移
多普勒效应的产生主要是由于无线电波的波源或观察者相对于传播介质的运动而使观察者接收到波的频率发生变化的现象。由于移动台或者终端相对于基站的移动方向不同,多普勒频移的影响也不相同。
2.1.1 移动台(终端)向着基站的方向运动。假设移动台的移动速度为V,而基站的下行无线信号的发射频率为f1。由于多普勒效应的影响,移动台接收到的无线信号的频率为f2,移动台以f3向基站发射上行无线信号,基站收到的来自移动台的上行无线信号的频率为f4,则可以
得到:
2.1.2 移动台(终端)向远离基站的方向移动。参考上面的分析,同理可以得到如下公式:
国内规划、建设和运营中的高速铁路最高设计时速为350km,而现网运行的移动通信系统的系统芯片在设计的时候,一般都考虑了频偏的影响,采用了频率补偿算法,因此现有移动通信系统都具有一定频率偏移的容错能力。虽然在高速铁路环境下的多普勒频移现象对移动通信系统的影响较普通或者慢速移动环境下的影响严重,但整体影响并不严重,移动通信系统仍可以正常工作。
2.2 快衰落
国内运营开通的高速铁路列车,一般运营时速接近300km/h,最高的时速接近350km/h。对于主要工作在800M~2GHz之间的移动通信系统,其快衰落的衰落深度严重时可能达到20~40dB,这将严重影响网络覆盖。但是我们知道,在高速铁路覆盖的环境下,基站一般沿着铁路线覆盖,周边高大建筑物较少,因此移动台与基站间一般都存在着直射路径,故移动台收到的无线信号的电频主要受路径损耗影响较大,而受到由多径效应产生的快衰落影响较小。
2.3 车体穿透损耗
国内正在运营的高铁列车目前主要有四种类型,表2为不同型号的高铁列车的基本概况:
根据相关测试统计,CRH1型号的高铁列车穿透损耗为20~30dB,其他型号的高铁列车的车厢穿透损耗一般为10~15dB,由上述分析来看,CRH1型的高铁列车的车体穿透损耗最大,因此在制定覆盖方案需要充分考虑CRH1列车的覆盖要求,满足了CRH1列车的覆盖要求,也就满足了其他型号高铁列车的覆盖要求。
2.4 切换与重选
对于国内三大运营商现有的GSM、TD-SCDMA、WCDMA和CDMA2000四张移动通信网络,完成一次切换的时间(工程经验值)一次为3~5秒、1.5~3秒、0.8~3秒、0.3~5秒。故对于上述移动通信系统,移动台完成一次切换,要求两个基站间的覆盖重叠区域的长度不应该小于2×V×T/3600(km),其中V(km/h)为移动台的移动速度,T为系统完成一次切换所需时间。
根据上面的表格,不同的系统,由于切换所需的时间不同,因此切换带设置的距离也不相同,整体来说,GSM网络需要的切换时间最长,需要的切换带距离也最长,因此在实际高铁网络覆盖方案中GSM网络切换带的设置也是需要重点关注。
3 高速铁路覆盖解决方案
高铁列车高速运行对现有移动通信网络的无线覆盖在技术上提出了一定挑战,根据前面的分析,高速铁路列车的移动通信网络覆盖面临的各种问题主要是由于移动台高速移动,造成在多小区间的频繁切换;车体结构变化,车厢穿透损耗增大;列车快速移动,多普勒效应现象严重。针对上述问题,相关运营商主要采用了两种高铁覆盖解决方案:现网优化和虚拟专网。表4从覆盖指标、切换指标、容量指标、建设难度及优化难度等方面对以上两种建设方案进行了对比。
4 国内主要的高铁覆盖方案对比
4.1 虚拟专网方案
对于中国移动,经过多年的网络建设,其基站较密集,尤其在市区,存在同一覆盖区内多小区重复覆盖的现象,尤其在市区的铁路沿线附近,信号复杂,采用现网优化方案,网络优化难度大,同时对铁路沿线的基站进行大量优化调整,必将影响原有的大网覆盖,带来大网的网络质量下降。因此中国移动在高铁覆盖方案选择时,多选择建设专网方式。对于采用专网建设方式,主要考虑以下四项关键技术。
4.1.1 网络带状覆盖。由于高铁列车在行使过程中频繁跨越不同小区,切换频繁,有可能会造成掉话等网络问题,影响网络质量。一方面,为减少移动台在高铁列车行驶过程中的切换次数,需要在高速铁路沿线建设以专门覆盖铁路为目的的带状虚拟带状网络,通过对带状网络的各个小区的位置、天线方向角等参数的调整,可以使高速铁路上的移动台首选在这个虚拟专网内部小区之间切换,而不在附近的大网内小区间切换,这样可以降低切换的次数,降低了掉话率;另一方面,由于专网内的各个小区的位置和间距是通过链路预算获得,这样可以在保证覆盖和小区间的切换重叠区域要求的前提下,使切换次数达到最小,从而提高网络质量。
另外随着技术和移动通信设备的发展,基站的形态也发生了根本的变化,现在主流的基站形态为BBU+RRU方式。在这种基站形态下,可以采用多RRU共小区技术,从而使几个RRU的覆盖区变成一个小区,移动台在这几个RRU之间移动,不发生切换,这样可以使移动台在十几公里的范围内,不发生切换,从而大大降低了切换次数,带来了网络质量的提升。
4.1.2 多普勒频移的抑制方法。多普勒频移主要与移动速度有关,因此我们可以减小列车相对与基站的移动速度,来降低多普勒频移的影响。降低移动台的相对移动速度,可以通过拉大基站与铁路之间的间距来减小移动台相对于基站的移动速度,但是由于基站和移动台的发射功率有限,其网络覆盖半径也有限,基站与铁路之间的距离越远,网络覆盖效果越差,因此不能简单地通过拉大基站与铁路之间的距离以降低移动台的相对移动速度,以免影响基站对铁路的覆盖效果。基于上述分析,在站点资源允许的情况下,建议高铁覆盖基站与铁路之间的垂直距离在100~300m之间。
4.1.3 高增益天线的采用,增加基站的有效覆盖范围。一方面,在基站的发射功率一定的前提下,采用高增益天线,天线的水平波瓣角变小,使无线信号的能量在某一方向上集中,从而使这一方向的基站有效覆盖范围增加;另一方面,较小的水平波瓣角小,也可以很好地控制专网小区信号外泄,降低对周边大网的影响。
4.1.4 采用功分器,避免基站内部小区间切换。根据上述的分析,影响高铁环境下移动通信网络质量的主要原因是频繁切换问题。在现网,一般一个基站有多个小区,而在同一基站的多个小区间,重叠覆盖区小,无法保证高铁列车快速运行,对切换区域距离的要求。因此在工程建设中,可以引入功分器这一器件,把一个小区的信号利用功分器平均分成两部分,用两幅天线辐射出去,这样一个小区变成两个扇区,而这两个扇区的信号来自一个小区,在它们之间不存在切换问题,从而解决了同一基站不同小区间的切换距离不够可能造成掉话的问题。
4.2 现网优化方案
对于中国电信和中国联通,由于自身的网络特点和投资特点,其在高铁网络覆盖方案选择上,多采用现网优化方案。
现网优化建设方案,考虑重点考虑以下五个关键技术:天线调整、波束宽度调整、功率调整、主覆盖小区梳理、切换/重选参数优化。
4.2.1 天线调整。天线调整是覆盖优化最优先考虑的方法,同时也是最有效的方法。在高铁沿线基站进行天线调整时,主要进行天线的方向角和下倾角调整,调整方向角的目的是为了使高铁覆盖基站小区的主瓣方向沿着铁路覆盖,提高铁路覆盖效果。在高铁沿线的基站覆盖中,应尽量减小下倾角的设置度数,以提高单站的覆盖范围。
4.2.2 波束宽度调整。结合基站的位置,小区天线覆盖方向,针对个别路段信号覆盖仍较弱,但又无法通过天线调整来解决的,可以通过调整天线波束宽度来加强信号覆盖。天线的波束宽度一般有四种取值:30、65、90、120。从取值我们可以看出来,波束宽度取值越小,能量可以更集中在铁路覆盖沿线,可以有效提高铁路沿线的覆盖效果。
4.2.3 功率调整。覆盖的优化除了调整天线和波束宽度调整之外,还可以调整小区的发射功率。功率设置过高,虽然可以提高小区的覆盖范围,但是可能会造成邻近的小区的干扰;设置过小,虽然可以降低干扰,但是影响覆盖,会造成部分区域存在弱覆盖的问题,所以在进行功率调整时,需结合现场详细的测试,进行综合考虑。
4.2.4 主覆盖小区梳理。切换是造成网络质量下降的一个重要因素,所以在满足覆盖的前提下,可以通过手天线调整、降功率、切换参数设置,甚至是删除邻区关系等手段,尽量将高铁沿线的某些非必要的小区剔除出高铁覆盖区,从而达到高铁沿线有明确的主覆盖小区,减少乒乓效应的发生次数。
4.2.5 切换/重选参数优化。切换、重选慢导致小区边界信号强度偏弱问题,可进行小区合并、调整切换迟滞、切换时延、加大小区偏置、迟滞、重选延迟等参数来解决。
乒乓切换问题,在车速很快的情况下,信号强度变化也快,乒乓切换往往会造成切换不及时而导致弱信号掉话。优化的手段有FR优化和切换参数优化两种,FR优化是优先考虑的方法,但天线调整往往比较费时,所以有时也可考虑通过参数优化来达到抑制乒乓切换的效果。
5 结语
随着中国高速铁路的不断提速,为移动通信的高铁覆盖带来了新的挑战,造成了网络质量的下降,严重影响了用户的感知,因此为了应对高铁的开通运营对移动通信网络质量的影响,需要研究和制动高速环境下的通信网络建设方案,改善高速列车上的通信质量,满足人们通信的需求,树立移动运营商的良好形象。
参考文献
[1]华为技术有限公司.GSM无线网络规划与优化[M].北京:人民邮电出版社.
作者简介:殷鹏(1973—),中邮建技术有限公司高级工程师,硕士,研究方向:无线通信新技术和移动通信网络规划与优化。
(责任编辑:文 森) |
|