网站域名出售 微信:  hucheng114

网站内容整理中,如有侵权内容请联系我们处理

友情文档

 找回密码
 立即注册
搜索
查看: 231|回复: 0
收起左侧

德国数学家黎曼的生平简介

[复制链接]
等级头衔

等級:小学生

Rank: 2Rank: 2

积分成就
UID
2549
主题
40
精华
0
墨水
110

发表于 2022-2-21 20:46:10 | 显示全部楼层 |阅读模式
  黎曼生平简介
  常常会有人问到,在数学微分几何的发展上如果没有黎曼的出现会怎样,这个假想的结果我们不敢想象,但是我们可以得知的是,黎曼在他的数学和物理研究当中得出的一些结论,对于自然科学的发展都起到了极大地推动作用。
  黎曼简介是从他出生开始的,他出生在一个并不富裕的家庭,父亲是小镇的一名牧师,这个喜欢安静的孩子在兄弟姐妹当中似乎显得有点特别,而即使是成年以后,由于喜欢独处,他也并没有多少朋友。最初黎曼是按照父亲的意思学习神学和哲学方面的知识的,但是由于喜欢数学,他后来转行去学数学。
  雅克比和狄利克雷对于黎曼的影响非常大,在黎曼简介里,这两个人对于黎曼就是恩师一样的存在,而在这两位老师的教导下,他相继攻克了几个难题,包括当时比较出名的复变函数在什么样的条件下是可导的等,这样他在学术界有了自己的名声。随后他坚持数学研究,并且受聘于哥廷根大学作为教授。由于他在几何数学方面的研究不断取得突破,他开创了属于自己的黎曼几何学,成为了数学微分学、几何学上的有突出贡献的人。
  黎曼在晚年的时候,身体状况非常差,而为了维持身体状况的良好,他多次去意大利修养,这时候黎曼和很多人开始联络的很少了,戴德金是一个联系比较密切,知道他身体情况的人,在第三次去意大利的修养的过程当中,黎曼因为肺结核离开了。
  黎曼的成就
  黎曼大家都非常熟悉,在数学分析上,我们会学到很多关于黎曼的定理,黎曼的一生当中,可以说是研究成果非常丰富的,他出生在一个传统的牧师家庭,最初是按照父亲的意愿去学习神学,但是由于兴趣使然,后来黎曼转专业开始后研究数学。
  黎曼的成就在数学可以很清楚的看出来,最开始在老师狄利克雷的指导下,他论证了复变函数可导的充分条件,这是黎曼敲开了数学研究的第一块砖,而从此,黎曼开始在微分几何的相关研究上不断取得全新的进展,他也首次提出了黎曼空间的概念,把当时时代上已知的欧式和非欧式几何通通都归到了黎曼空间的范畴之中。
  在贝塔函数上,黎曼的成就也非常大,他在当时他的一篇论文中第一次提到了黎曼曲面,这也是一个非常重要的发现,而把贝塔函数和贝塔积分作为一个全新的研究对象,在当时的数学史上,更是一个转折点,这样的观念对于现代代数拓扑的发展也极为重要。而在黎曼这些研究的指导下,罗赫做了一定的补充,形成了后来非常著名的黎曼罗赫定理。
  虽然在数学上的研究上,黎曼可以说是功不可没,但是长时间高强度的脑力劳动对于黎曼的健康影响非常大,他在晚年的健康状况非常糟糕,并且几乎没有办法继续工作,在一次去意大利的有氧过程中,因为肺结核感染,黎曼去世了,而伴随着他的去世我们失去了一位成就卓越的数学家,但是他对于数学研究所做出来的那些贡献却伴随着现代人。
  黎曼积分
  高等数学上,我们会接触到定积分,而定积分还有另外一个名字叫做黎曼积分,他在数学上指的是在一个指定的区间里,存在一个非负函数,而这个函数代表的曲线和坐标轴之间会有一个特定的图形,这个图形的面积一般就被称为定积分,也被叫做黎曼积分。
  而为什么会用到黎曼积分,这其实和黎曼和有关,这是在求图形的函数图像和坐标轴围城图形的面积过程当中,不是采用过去的几何方法直接去算,而是用黎曼和去逼近,当这两个数值无限接近,那么,就可以求出我们要的结果了。
  而黎曼和的计算上大致上有这样几个步骤,分割区间,求和,取极限。区间的分割不是随意的,首先要选择一个闭区间,然后才可以进行分割,对于区间的分割必须尽可能的精细,因为当所取的区间非常小的时候,非负函数的曲线就可以近视的堪为一条直线了,这样一个求面积的计算就变成了求很多个小的长方形的面积了,选择这样的方法来计算图形的面积,可以在允许的范围内最大限度的降低误差。并且把求一个不规则图形的面积转化成求很多个规则图形的面积。
  而现在,黎曼积分在数学上几乎成为了高等数学的基础,他作为后续其他课程的基础,如果能够正确的理解极限求和的思想,在以后的高等数学中,学起来就不是很困难了。而今天我们对于积分能够有这样的认知,完全是得益于黎曼当时的研究。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表